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Percolation invasion displacement of a compressible defender is examined for 
two cases: when only the smallest accessible site is entered at each step and 
when all accessible sites less than the size given by a reducing back pressure are 
entered at each time step. Although the fractions of invading fluid are different, 
their scaling properties are equivalent. The effect of limited control of a back 
pressure in a real displacement and the effect of viscosity in a real time 
displacement are examined. In these cases the scaling properties of a percolation 
process at breakthrough are removed. As a result, one should expect that 
realistic displacement models will not have the singular properties usually 
attributed to percolation processes. 
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1. INTRODUCTION 

T h e  d i s p l a c e m e n t  of  o n e  f lu id  b y  a n o t h e r  in  p o r o u s  m e d i a  is of  

c o n s i d e r a b l e  c o m m e r c i a l  i m p o r t a n c e - - f o r  e x a m p l e ,  in  c o n n e c t i o n  w i t h  oil  

r ecove ry .  4 A l t h o u g h  t he  m a j o r i t y  of  c o m m e r c i a l  c o m p u t e r  m o d e l s  for  th i s  

p r o c e s s  a re  c a r r i e d  o u t  a t  t h e  D a r c y  sca le  5 ( w h e r e  t he  r o c k  s t r u c t u r e  is 

a v e r a g e d  o u t ) ,  a m o r e  f u n d a m e n t a l  u n d e r s t a n d i n g  of  t he  p r o c e s s  c a n  b e  

1 Department of Chemistry, University of Calgary, Alberta, TIN 1N4 Canada. 
2 East Kootenay College, Cranbrook, British Columbia, Canada. 
s Physics Department, University of Hawaii, Honolulu, Hawaii. 
4 Conventional primary production may yield only 5 to 20% of the original oil in place. 

Injection of the reservoir (flooding) with producer gas, with COz, or with water (brine) can 
displace another 20%. See, for example, the description of a series of carbonate reservoirs in 
ref. 1. 

5 See, for example, ref. 2 for a good account of the status of commercial simulators. For a 
discussion of the Darcy and other macroscopic models for flow in porous media, see ref. 3. 
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achieved by considering flow in the network of connected micrometer-scale 
spaces or pores of the reservoir rock. It was realized very early that pore 
scale flow dependend not only on locally defined physical laws but also on 
global properties of the pore network. 6 The availability of large-capacity 
fast supercomputers and the availability of microscale experiments 
exposing the fundamental events (6'7~ has made the modeling of these 
processes at the pore scale a realistic goal. Several such studies, where 
advance is controlled by capillary force (the so-called invasion percolation 
model (8)) have been undertaken. (9-12/ However, the applicability of the 
results to experiments in the laboratory or to displacement and oil recovery 
in the field has been questioned. In particular, any saturation calculated at 
a critical point such as the "breakthrough" of the gas or brine from the 
injector to producer well or the complete "disconnection" of the defender 
oil from the producer is suspect. This is because the saturations generated 
by percolation processes are scale dependent at these critical points. In 
more formal terms, the invasion domains are fractal, (13~ with the 
unfortunate consequence that the invader saturation at breakthrough goes 
to zero as the system becomes infinite. This implies that the defender 
saturation remains at 100%, that is, 0% of the oil is "produced" even 
though the flood has reached the producer well. 

In a computer model of the process the network of channels (throats) 
and spaces (pores) of a porous reservoir can be represented on a grid by, 
respectively, the bonds (i.e., the grid lines) and sites (i.e., the intersections of 
the grid lines). These bonds and sites can be given geometric properties; for 
example, both the cross sections rb, rs and the connectivity of the sites can 
be adjusted as appropriate for the particular porous medium. (14) 

The process can then be modeled by simple rules which control the 
advance of fluid from an invader-occupied site to a contiguous site and 
withdrawal of defender fluid from this site. The physical basis for these 
rules could be as simple as the capillary pressure. For example, if the 
defender fluid (oil) is nonwetting and the invader (water) is wetting, then in 
every channel or pore space there is a capillary pressure in favor of an 
advancing water interface--one has "imbibition." Since the capillary 
pressure is proportional to contact angle and interracial tension and inver- 
sely proportional to the radius of the interface, the largest capillary 
pressure occurs for the smallest radius, other factors being constant. Con- 
sequently, the invader fluid will have a propensity to move into the smallest 
contiguous defender-occupied element. The initial state of the fluid must 
then be characterized by a "back pressure" sufficient to prevent the invader 

6 The classic monograph of Scheidegger, C4~ contains an early exposition of the connection of 
pore scale properties to macroscopic characteristics. Fatt (5~ should receive credit for early 
work which treated a porous medium in terms of a network of sites and bonds. 
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from entering any and all of the set of sites contiguous to the invader. If we 
require that the radius of any site is greater than the radius of any bond (a 
reasonable constraint in porous rocks), this initial back pressure will be 
just the capillary pressure of the smallest defender-occupied site adjacent to 
the initial line of invader-occupied sites. This initial back pressure is taken 
to be insufficient to prevent penetration of the bonds. The invasion process 
commences by lowering the back pressure enough so that the smallest site 
adjacent to the invader front can be penetrated. The required pressure is 
directly controlled by the crosssection of the site in question, i.e., its "size," 
so the process is the aforementioned site-size-controlled "percolation 
invasion. ''(8) 

Under the circumstances described above, an algorithm which ensures 
that the invader fluid is always connected to the source is a relatively trivial 
matter. Further, if one assumes that the defender fluid is infinitely 
compressible, (15~ then the algorithm is further simplified and can be 
implemented for quite large grids. If the defender fluid is incompressible, 
the algorithm, although more complicated, is readily constructed (s 12) but 
its execution is more time-consuming. Additional complexity is introduced 
if, in addition to the source line, the initial state of the grid contains 
invader-occupied sites from a previous invasion. (16) 

The purpose of this paper is not to consider more complicated 
algorithms, but rather to examine carefully the connection of the simple 
algorithms to the procedures which control invasion of a real system. We 
have alluded to reducing the back presure such that the single smallest 
accessible defender-occupied site can be invaded. What if this pressure 
reduction makes several smaller sites accessible? Does one imagine increas- 
ing the pressure suddenly until the smallest of this new set of sites is deter- 
mined and then lowering the pressure such that only the smallest is 
occupied? How would a single-smallest-site process be controlled? Does 
one really mean penetration of the single-smallest site or is one lowering 
the back pressure in steps and allowing all accessible sites which are 
invadable at that back pressure to be invaded (ref. 8, p. 3368, paragraph b, 
briefly discusses this point, as does ref. 11)? If the latter "several-sites" 
model is invoked, what happens if the pressure can be controlled with 
infinite accuracy? 7 What happens if pressure control can only distinguish 
between site sizes which are different to two figures? 8 Does the fraction of 
7 Chen and Koplik, (17) in a carefully controlled experiment on a small (4 • 4) grid, argued that 

indeed only the smallest site was invaded if the rate was sufficiently small. Lenormand and 
Zarcone I18) argued that their experimental results followed the scaling laws for percolation 
with trapping found earlier by Wilkinson and WillemsonJ 8) 

8 Pressure control in the displacement experiments of Wardlaw and co-workers (6,1~ is 
relatively crude and there is no expectation that the procedure would allow selection 
between two pores differing by only 1% in radius. 
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sites invaded at breakthrough depend in the same way on the size of the 
grid? Suppose the invasion process takes place at a slow but nevertheless 
finite velocity so that there is some viscous drag (several authors have dis- 
cussed this point(19)). How would this affect the "percolation invasion" 
process? Modeled on a grid, this would mean that sites at different 
locations and with different radii could, due to viscous effects, become 
equal candidates for penetration. This could occur even for a very small 
viscous drag and would not be circumvented by an infinitely accurate 
pressure control. What happens to scaling properties with these changes? 
What happens when there is a small but position-dependent gravity field 
(ref. 20 examines a model where buoyancy plays a role)? We shall discover 
that apparently subtle details of the implementation of the algorithm may 
profoundly affect the properties of the invasion, especially scaling proper- 
ties near the critical point. 

Because of its central role, we begin by examining the single-site con- 
ventional percolation invasion model of Wilkinson and Willemsen. (8) This 
process yields a fractal object at breakthrough and will be compared to the 
more realistic model where several sites can be simultaneously occupied. 
We will give a proof that this latter process leads to the same fractal dimen- 
sion as the single-site model. The examination of the physical control of the 
several-site model suggests a variety of means to relax the mathematical 
model which will violate the fundamental criteria required for the fractal 
character of a percolation process. Finally, we cite numerical measurements 
of the dimension for the algorithms appropriate to each of these models. 

2. P E R C O L A T I O N  I N V A S I O N  

We consider a grid in two dimensions, of width L and length 2L, with 
sites labeled Li, j, where 1 ~< i~< L, 1 ~< j~< 2L. The source (injector) of the 
invader fluid is the line of sites Li,1 (1 ~< i~< L) and the sink (producer) is a 
line of sites Le,2L (1 ~< i<~L). The edges Lio  and LLj are neighbors (i.e., as 
on a cylinder). Sites on the grid are assigned "sizes" (0 ~< r~ ~< 1) selected at 
random from a uniform distribution and each site is connected to four 
neighbors. The initial state has all sites of the source line occupied by the 
invading phase and all remaining sites occupied by a defending phase, 
which is taken to be infinitely compressible. 9 

9 The use of an infinitely compressible phase is not as unphysical as might appear at first. If 
the disconnected phase is wetting, the disconnection may not be sufficient to rupture the thin 
film adhering to the walls of the system and as pressure is increased the apparently trapped 
fluid may leak away. See, for example, Lenormand. 115) 
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2.1. The "Contro l  V o l u m e "  or "S ing le -S i te"  Process 

In the algorithm for the percolation invasion process, one seeks the 
smallest size defender-occupied site contiguous to the invader front (i.e., 
initially one would test all sites La,  1 ~< i~< L, and seek the smallest). Once 
this single smallest site is identified, it is occupied by the invader. This step 
creates additional sites contiguous to the invader and the set of all sites 
contiguous to the invader are again examined for the smallest size and 
when it is found this single site is invaded. One site at a time is invaded, 
each with its own capillary pressure. Consequently, control of this process 
would require a rapidly oscillating back pressure rather than a 
monotonically decreasing pressure. However, one could imagine carefully 
controlling the available volume of invader such that only one site at a 
time is penetrated, with the presumption that this would be the smallest 
site. The process terminates when a single site on the sink line is penetrated 
by the invader--this is called breakthrough. 

For any particular grid the invasion process will have resulted in the 
occupation of one site which is larger than all other sites in the invader 
domain. We let this site be located at Xo Yc and let the size of the site be 
denoted as Ro The capillary pressure associated with a fluid interface in 
this site is Pc and is proportional to 1/Rc. 

At breakthrough, there is a continuous (i.e., from source to sink) 
invader domain constituted by all sites which are occupied by the invader. 
The number of sites in this domain divided by the total number of sites in 
the grid is the percent continuous-invader-at-breakthrough (%CIBT). 
Similarly, a number of sites occupied by a defender will have been surroun- 
ded by the invader and hence cutoff or disconnected from the sink. 
This number yields a percent disconnected-defender-at-breakthrough 
(%DDBT). Depending on boundary effects, one also has some defender 
near the sink "end" of the grid which is neither disconnected not displaced 
and is referred to as percent connected-defender-at-breakthrough 
(%CDBT). 

Although the grids over which the invasion process takes place are 
constructed such that the sizes of the sites are "random," it is nevertheless 
true that any particular realization is different in its details. Consequently, 
the position of the critical site in any particular grid may be anywhere in 
the grid, i.e., 1 <.Xc<~Lx, 1 <~ Yc<~Ly. Since all values of Xc from 1 to Lx 
are equally probable, the average value of Xc = (Xc)  over a large number 
of realizations of the grid would be ( X c ) = x c = L x / 2  and 
(Yc)  -= Yc = L y/2. If the site sizes for any grid are ordered from smallest to 
largest (i.e., Rmi n to Rmax) then, for any particular grid, Rc will lie at some 
particular position in this ordered set. Indeed it can be "shown" that the 
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average value of Rc over a large number of grids is such that 59.28 % of the 
sites are smaller than Rc .1~ Consequently, if one sets the largest site to 
unity, then, for a uniform distribution of sizes, the critical fractional size is 
Rc = 0.5928. We should emphasize that a value such as 0.5928 is the value 
for infinitely large grids, and for finite-size grids one should say that Rc 
approaches 0.5928. Rather than refer to averages over many grids, we shall 
henceforth refer to an "average grid" in which the critical fractional size is 
0.5928, located at the midpoint xc=Lx/2, yc=Lr/2,  and for which the 
percentage of sites occupied by defender at breakthrough in this average 
grid is denoted by ( %  CIBT).  Similarly, we will have an average percen- 
tage disconnected defender ( %  DDBT).  

Since for percolation invasion the invader domain at breakthrough is 
known to be a fractal object with dimension D = 1.896,1~ its density, which 
is just ( % C I B T ) ,  will scale as (13) 

( %  CIBT ) = CL D- 2 = CL-o.lo4 (1) 

where C is a constant. As L---, oe the average percent invader at 
breakthrough will go to zero. Thus, the control-volume percolation 
invasion algorithm leads to a saturation which is scale dependent at the 
breakthrough point. This is definitely an undesirable feature if one wishes 
to apply the results to real systems of arbitrary size. 

2.2. The "Cont ro l -P ressure"  or "Severa l -S i tes"  Process 

As an alternative to the "control-volume" invasion percolation process 
(CV) described above, one could consider a "control-pressure" invasion 
process (CP). The first step in the imbibition process is now to ascertain 
whether any of the defender-occupied sites L,,2 (1 ~< i<~L), contiguous to 
the invader, are smaller than some selected size. For example, one could 
start with a size 0.01 (which is equivalent to a large capillary pressure, in 
turn requiring a large "back pressure" to hold the imbibing liquid in 
check), allowing all sites Li2 (1 ~< i ~< L) contiguous to the invader and with 
size equal to or less than 0.01 to be penetrated. There could be several such 
sites! The invasion creates additional boundary sites and these new sites 
are examined to see if any of them are of a size equal to or less than the 
currently selected size of 0.01, and if so, they are penetrated. The process is 

10 There is a substantial literature on percolation thresholds, both "experimental" (computer 
simulations) and "theoretical" (e.g., Bethe trees), t2~1 For a recent simulation result see ref. 22 
and for a theoretical analysis see ref. 23. 

x~ Stauffer/24~ remarks that "two dimensional exponents are widely believed to be exact" 
(p. 96), and gives D = 91/48 - 1.896. See also refs. 25. 
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repeated until no further advance is possible at the selected size. The size is 
then increased slightly, for example, to 0.02 (i.e., the back pressure is 
decreased appropriately) and all sites on the boundary of size equal to or 
less than 0.02 are penetrated and the search is continued until again no 
further advance is possible at the selected size. The process achieves 
breakthrough when the size selected (i.e., back pressure selected) allows at 
least one site on the sink line to be penetrated (it should be emphasized 
that this last pressure reduction could allow several sites on the sink line to 
be penetrated, since all contiguous sites of size equal to or less than the 
breakthrough size are penetrated in this final step). 

As with the CV process, there exists a single largest site R~ through 
which the invader in the CP process must pass in order to achieve 
breakthrough. The position of this site is located at X'c, Y~, where the 
primes indicate that, at this point in the argument, we have not proved that 
the site in question is the same as for the CV process. 

2.3. Compar ison  of the  C V  and CP Pat terns  

2.3.1. Just  As the  Cri t ical  Size Is Encountered .  In the CV 
process the algorithm seeks only the smallest site, and so, as the invader 
cluster "grows," the size of single new growth sites may be smaller or larger 
than any site opened up by the previous growth step. In effect, the sizes of 
the sites invaded increase or decrease as the "easiest path" is sought, until 
eventually the size Rc is encountered. The location of the site being 
invaded may be anywhere on the front. Certainly, just before the CV 
process encounters the critical size R c at Xc, Yc it will have probed all sites 
with size smaller than Rc which are connected to the seeding line by 
invading fluid. We can illustrate schematically the invaded region as in 
Fig. 1, where c indicates "dead-end" regions which terminated at sites with 
sizes greater than Rc and where bl is a region that contains Rc on its 
boundary (regions c and bl are connected only through the source line). 
All sites with size R < R c which are accessible from the seed line will have 
been penetrated by an invader. 

For the CP algorithm, invasion begins by inquiring whether sites 
accessible to the front are less than a chosen control size (i.e., equivalent to 
a chosen control pressure). Sites of many different sizes (all less than the 
control size) are penetrated at this point. Then the control size is increased 
and further advance permitted. Consequently, at each control size a group 
of sizes (all less than the control size) are entered. The largest size in each 
group does, however, show a steady increase as the control size is 
increased. Eventually the control size increase to Re, at which point all 
sites with size less than Rc and which are connected to the seed line will 
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Fig. 1. Pattern of invaded sites just as the critical pore is reached. Sites which will be part of 
a continuous cluster, b~. Sites which are part of a "dead-end" cluster, c. Sites which have not 
yet been invaded are the remaining regions. 

have been invaded. Regions c and b2 analogous to the CV case could be 
defined and they are in fact the same regions as c and bl. The order in 
which these sites were invaded is different in the two cases, but as long as 
the defender is compressible the invaded regions c and b~ in Fig. 1 are the 
same for both CV and CP. 

2.3.2. The Density at  Breakthrough.  From the critical point 
forward the results for the two algorithms do differ. The CV process seeks 
the easiest path forward and consequently need only enter such sites as are 
necessary to generate a connected path from Xc, Yc to breakthrough. In 
the CP process all sites connected to the source by an invader and which 
are less than Rc will be penetrated as the invasion front proceeds to 
breakthrough. The distinction between the two processes is illustrated in 
Fig. 2, and in Figs. 3a and 3b the completed patterns are compared 
schematically. 

Since many more sites are occupied by CP in the last stage of 
invasion, the region a2 in Fig. 3b covers more sites than its analog a~ in 
Fig. 3a. The density of the CP pattern, 

( % C I B T ) '  = (C+bl)+a2 (2) 

is greater than or equal to that for CV 

( % C I B T )  = ( c + b ~ ) + a l  (3) 

Since ( %  C I B T )  for the CV process goes to zero as L --, 0% it is clear that 
each of a I, bx, and c go to zero. But the scaling properties of the invader 
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0.520 < 0.560 

0.510 ( 0.530 

o6oo ( ~  0.50o 
0.555 ( 0.593 

0.550 

Fig. 2. Pore scale patterns: (a) pore sizes; (b) volume control (easiest path); (c) pressure 
control (possible path). 

(a) 

(b) 

Fig. 3. Schematic pattern: (a) volume control; (b) pressure control. 
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Fig. 4. A reverse path: invasion from the opposite end just before the critical pore is 
reached; hypothetical path, J. 

fraction ( % C I B T )  for CP are not fully established, for the scaling 
properties of a2 must still be investigated. 

2.3.3.  A R e v e r s e  P r o c e s s .  To investigate the scaling of a2, we 
consider the same grid used heretofore except that the invasion process 
begins from the opposite "end." The CP process results in the invasion of 
the regions denoted by c and b 3 in Fig. 4. We assert that the region b 3 ter- 
minates at the same critical site as bl and continues on to breakthrough, 
generating a 3 as it does so (cf. Fig. 5). In order to check the validity of this 
assertion, consider an alternative breakthrough path that does not include 
the same Rc. A path starting anywhere along the line x = Lx, 1 <<, Ly <. Lx, 
such as J in Fig. 4 would of course terminate somewhere on the line 

Fig. 5. A reverse path: invasion from opposite end. 
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x = 1, 1 ~< y ~< Ly, i.e., it would connect to the seed line. The existence of 
such a path would be ruled out, since by construction (recall Section 1.2) at 
breakthrough, any path from the left boundary to the right boundary must 
include the site of size Rc at X C, Yc. Consequently, the path J does not 
exist, i.e., all paths must include Rc at Xc, Yc--thus R'c=Rc and 
J('c = Xc, Y'c = Yc. Since this is true, one can construct Fig. 5, where it is 
clear that b 3 = b2. 

Further, since there is nothing unique about which "end" of the 
average grid one starts from, it is evident that a3 = a2 and b3 = b2. Hence, 
b~=b2=b3=a3=az.  Since one knows the scaling properties of bl, 
namely, as L--* o% bt ~ 0 ,  then one now knows that a2--*0 also. Our 
conclusion is that even though the CP invasion process generates a more 
robust invasion pattern than CV (cf. Figs. 2 and 3), it nevertheless scales 
with L with an identical fractal dimension, and for infinitely large grids 
( % C I B T ) '  also goes to zero. 

2.3.4. Compar ison  of the  Fractal  D imens ion  Obta ined  for  
CV and CP by a Simulation. In order to illustrate these features we 
present in Fig. 6 the results of calculations for the invasion process for the 
CV and CP algorithms for 2L x L grids of increasing size. In every case the 
measurements were over the central L x L domain (from L/4 to 3L/4) and 
at least 500 realizations were made for each size L except the last two, 
where 250 realizations were obtained. The standard error of the invader 
fractions is +0.001. For L >~ 64, Fig. 6 shows the same linear decay of 
( % C I B T )  for both CV and CP. The slope indicates a fractal dimension of 
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Fig. 6. Fraction of sites occupied by continuous invader N vs. size of the grid L. 
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In support of this result we have also calculated the dimension D m 

directly on the largest grid (1024 x 512), using the expression (26) 

ln(N(lm))/N(Im + 1 ) 
D~(CI)  - (4) 

ln(l,~+ x/lm) 

where (4) N(lm)  is the number  of times a window of size l~ = 2 m must be 
laid down to cover the invader-occupied sites on the grid. Using Eq. (4) 
and an extrapolation technique, 12 the best values of D(CI)  are 1.89 for CV 
and 1.90 for CP, both of which are close to the accepted value of 
1.896.~21 23) 

3. REAL IZAT ION OF T H E  C R I T I C A L  POINT:  L I M I T A T I O N S  

The arguments of Section 2 have relied on a grid in which no two sites 
have the same size--a  requirement realized only when each site is given 
to infinite accuracy. Further, the algorithm is presumed to be capable 
of infinite accuracy in making comparisons of sizes of sites. These 
requirements allow one to assert that a single critical size exists and that 
the algorithm will find this site precisely. If this criterion is not fulfilled, 
then the arguments of the previous sections fail. 

Suppose the accuracy of the back pressure is limited. For  example, in 
an imbibition process, suppose that the control of back pressure is only 
such that the control size must be increased by increments of 0.01 rather 
than an infinitesmal amount. As the control size is increased from 0.59 to 
0.60 in the CP invasion process on an infinite grid one must overshoot the 
critical size by 0.6000-0.5928 = 0.0072 to achieve breakthrough and for a 
finite grid such as 512 x 256 one will, on average, exceed Rc by about 0.005. 
A schematic representation of the pattern at breakthrough is given in 
Fig. 7. The invader fractions recorded as "breakthrough" are not the same 
as those of breakthrough for the algorithm with infinite accuracy and will, 
in consequence, have different scaling properties. Indeed, as soon as the 
critical point is passed, the Hausdorff  dimension will be exactly 2 for an 
infinite grid and tend to 2 for a finite grid. (28) The invader fraction no 
longer scales to zero with L according to Eq. (1). Thus, only an infinitely 
accurate pressure would ensure that the fractal properties of the idealized 
CP process were realized. 

Suppose the invasion process takes place over a finite length of time. 
The viscous drag will result in both a change in the value of the critical size 

12 See ref. 26 for details of our method. For the use of extrapolations in determining critical 
parameters see ref. 27. 
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.  i!iii 

Fig. 7. Pressure control (relaxed), CPR. 

and a shift in the location of the critical size away from the position charac- 
teristic of the fractal pattern of the exact CP algorithm. Due to the viscous 
drag, the external back pressure required to prohibit invasion of a 
"downstream" site could be less than for an "upstream" site even though 
the downstream site were smaller. Consequently, viscous drag could be 
viewed as changing the effective size of the grid sites in a systematic way. 

As an illustration, consider the sketch in Fig. 8, where a grid has been 
divided into three equal infinite regions with a size bias which has reduced 
the site sizes by 0.000, 0.010, and 0.020 in, respectively, regions A, B, and 
C. In order that breakthrough occur for region A, the back pressure must 
be reduced to allow the penetration of sizes of up to 0.593 or p~ = c~/0.593 
(here ~ is a constant characteristic of the interfacial tension and the contact 
angle). In order to break through region B, the back pressure would have 
to be reduced to allow penetration of sizes of up to 0 .593-  0.010 = 0.583, 
i.e., p~ = c(0.583, and for region C one would have pC= c~/0.573. Since 
breakthrough for the entire grid requires passage through all three regions, 
one would have to reduce the back pressure to at least p~. In so doing, 
one has reduced it more than required for regions B and C and in these 
regions the critical size would be exceeded by, respectively, 0.01 and 0.02. 
Thus, one expects the dimension of the invading fluid for regions B and C 
to be two rather than 1.896--the dimension of a percolating cluster at 
breakthrough. Since regions B and C represent a finite fraction of the grid, 
the density of the invading cluster will not scale to zero as the size L of the 
grid goes to infinity. 

For clarity of exposition, the size reductions in regions A, B, and C 
above were discrete. However, provided the size reduction function f(X) is 

822/53/3-4-12 
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a continuous, monotonically decreasing function with finite slope at X = 0, 
then the location of the critical point will approach the source line and the 
critical size will approach 0.593 + f ( X =  0). 

If the process requires a positive size bias, similar arguments apply. 
The most difficult region to penetrate will now approach the sink line and 
reduction of the back pressure to allow penetration of this region will 
exceed that required for upstream regions. Consequently, the Haussdorff 
dimension for regions A and B will be 2 for an infinite grid (and will 
approach 2 for a finite grid) and the density of the invader taken over the 
entire grid will not scale to zero as the grid size is increased. As with the 
previous case, only now for a monotonically increasing function f(X), the 

(a) 

(b) 

Fig. 8. (a) Effect of negative size bias on critical size. (b) Effect of positive size bias on 
critical size. 
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(a) 

(b) 

Fig. 9. (a) Pressure gradient, B > 0, due to viscosity or gravity. (b) Pressure gradient, B < 0, 
due to viscosity or gravity. 

locat ion of the critical size will approach  the sink line and the critical size 
will app roach  0.593 + f ( X =  2L). 

Schematic  representat ions of the pat terns  due to a positive and 
negative site size bias are given in Fig. 9. The  invader-occupied sites are not  
the same as those of  the exact C P  algori thm. Only  an infinitely s low 
process will ensure that  the fractal propert ies  of the percola t ion process are 
realized. The  fractal d imension and saturat ions  appropr ia te  to a specific 
model  are given in Section 4.2. 

4. A P P L I C A T I O N :  T O W A R D  M O R E  REAL IST IC  I N V A S I O N  
A L G O R I T H M S  

These two il lustrations should serve to make  it clear that  not  all 
invasion processes and not  all s imulat ions should presume a well-deter- 
mined "critical site." N o r  should one expect fractal propert ies  for all 
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displacement processes on a grid. Indeed, one might assert that a more 
realistic model of an invasion process would not be infinitely slow nor 
would there be infinite accuracy to the pressure control. 

4.1. Limited Pressure Control 

A simple way to model this is to presume a limited accuracy in the 
algori thm--a feature readily available in the CP process. Consequently, we 
shall refer to the constant-pressure (CP) process as CPX when there is a 
single critical site which can be distinguished from all others by precise 
(exact) control of the back pressure, and we shall refer to a constant- 
pressure process as CPR when the requirements for a unique critical point 
are relaxed ( - R )  by, for example, citing sizes (or pressures) to a finite 
accuracy, e.g., CPR(0.01) denotes an algorithm in which sizes are com- 
pared to only two decimals. 

For  the CPR algorithm, e.g., CP(0.01), the process can be implemen- 
ted by finding the critical size for a given grid and then stepping up to a 
size 0.01 larger. Alternatively the CPR algorithm can be implemented by 
increasing the size in steps of 0.01 from 0.58 to 0.59 to 0.60 and hence 
exceed the critical size 0.593 by, on average about 0.005 [-this would be 
denoted CP(0.005)]. As Fig. 6 indicates, the curve for l n ( % C I B T ) ,  for the 
finite accuracy CP(0.005) algorithm, flattens out to a constant value, as 
one would expect if the dimension approaches 2. A direct calculation of the 
dimension for the 512 • 256 grid using Eq. (4) shows that the dimension of 
the continuous invader (CI) does indeed approach 2 as the accuracy of the 
control is relaxed. For  example, for CP(0.001), D - 1 . 9 1 ;  for CP(0.01), 
D - 1 . 9 5 ;  and for CP(0.02), D - 1 . 9 8 .  Further, for CP(0.02), the 
extrapolated value (see footnote 12) of D(CI) is at least 1.99. Of course, for 
an infinite grid, the CPR algorithm will yield a D of precisely 2. 

4.2. A Pressure Gradient Bias (Viscous Drag) 

In order to give more substance to the role of viscosity, we consider a 
simple model in which the viscous drag of the moving fluid is associated 
with the length x of the moving column of invader and the length L - x of 
the moving column of the defender. Thus, the viscous drag is 

fv i sc  = ,UIX -~- #D( L -- X) (5) 

where #~ and /~D are effective viscosities associated with movement of 
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invader and defender fluids, respectively. Introducing the viscosity ratio 
U =  #D/~q, one has 

f~isc = #I[UL:,  + (1 - U) x]  (6) 

Clearly, #i scales the viscous drag for the system and in that sense is a 
measure of the velocity of the displacement process. On the other hand, 
[ U L x +  ( 1 -  U)x] indicates the change in drag as the composition of the 
fluid "column" changes with displacement of the front and is of course 
dependent on the viscosity ratio U and on x. 

A viscosity ratio of U =  10 is not unreasonable for water displacing oil 
and under these circumstances viscous drag will be much larger at the 
beginning of the displacement [-e.g., fvi~c(x = O) = #i ULx],  whereas at the 
end the viscous drag is much less [-e.g., f v ~ c ( x = L x ) = # ~ L x ] .  Thus, the 
back pressure required to keep the invader out of a site of given size will be 
less than without the viscous drag. In other words, the drag at every site 
reduces the ability of capillary pressure to cause the advance of the invader. 
This is equivalent to increasing the effective size of every site over and 
above the size given by the random number generator which defined the 
grid sizes. Thus, the effective size can have a constant term [cf. the term 
~ , u L x  in Eq. (6)], which we denote as Bo. The effective size may also be 
controlled by a systematic component, denoted as Bx  [cf. the term 
#i(1 - U) x in Eq. (6)], so that the effective size will change as one moves 
down the grid. For  the case U > 1 the drag decreases as x increases, so that 
the initial increase in size B 0 will be reduced by the value of (B)x.  Thus, 
the effective radius of the site is just 

reflective ~,te = r ~ t e + B o - B x ,  where B > 0  if U >  1 (7) 

In order for advance, the site in question must generate a capillary pressure 
greater than the back pressure which controls advance. In other words, the 
effective size of the site must be less than the control size which would 
generate a cap pressure equivalent to the control back pressure, 

r eflective ~ rcontro I ( 8 )  

A displacement process taking into account viscous drag was invoked 
using Eqs. (7) and (8) in the CV and in the CPX algorithms. Two hundred 
realizations on a 256 x 128 grid were obtained and the results are displayed 
in Table I. In all cases the constant term B o was set to zero and to illustrate 
the effect of a stabilizing viscosity ratio U > 1 and a destabilizing viscosity 
ratio U <  1 both a positive and a negative bias were employed. As the 
entries in the table show, the ( % C I B T )  is essentially the same (58.5 % and 
58.9%) for either bias when the CPX algorithm is used, whereas for CV 
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Table I. Effect of Viscous Drag on an Invasion Percolation Process 
on a 2 5 6 x 1 2 8  Grid 

Value of B in Eq. (7) -0.0018 0 +0.0018 
Position of Critical Site 40 128 218 

cv  (%CIBT) 23.1 38.8 58.7 
D(CI) 1.75 1.89 > 1.95 

CPX ( % CIBT ) 58.5 44.5 58.9 
D(CI) > 1.98 1.90 > 1.96 

they are significantly different (23.1% and 58.7%). This is because of the 
inherent asymmetry of the CV process (see Fig. 3). As one might expect, 
the location of the critical site is shifted from the midpoint (128) 
downstream to 218 for the positive bias and upstream to 40 for the 
negative bias. The fractal dimension D(CI) of the continuous invader, 
measured using Eq. (4) and our extrapolation technique, (26) approaches 2 
for the CPX algorithm for either bias on a finite grid (it is > 1.98 for a 
512x256 grid with B=0.009)  and would be 2 for an infinite grid. 
Consequently, the viscous drag tends to increase the dimension for a CPX 
algorithm and produce an invasion density which does not scale to zero as 
the grid size becomes infinite. 

5.  C O N C L U D I N G  R E M A R K S  

The CP percolation process, in which a compressible defender is dis- 
placed simultaneously at several sites, has the same fractal dimension as the 
CV process in which only a single site at a time is invaded. The advantage 
of the CP process is that it is easy to parametrize the control mechanism as 
a "back pressure" and consequently one can make an intelligent assessment 
of the accuracy of this control. We have argued that in a real model one 
cannot realistically expect the infinite accuracy implied by the CP 
algorithm, and consequently realistic computer models should incorporate 
this limitation. We have shown that a relaxation of the CP algorithm will 
subvert the properties of the process required for scale-dependent densities. 
Consequently, one should expect that a realistic model of the displacement 
process will not exhibit the scaling properties associated with an idealized 
percolation process on an infinite grid. 
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